

第七届全国大学生化工实验大赛决赛

CO2吸收-解吸实验资料

一、实验流程图

图1 二氧化碳吸收-解吸实验装置流程

1-CO₂钢瓶; 2-减压阀; 3-气样分析抽气泵(吸收侧); 4-CO₂传感器(吸收侧); 5-干燥器(吸收侧); 6-CO₂流量计; 7-吸收气泵; 8-吸收塔空气流量计; 9-抽气流量计(吸收侧); 10-吸收塔; 11-吸收塔液封; 12-吸收液罐; 13-吸收塔压差计; 14-解吸水泵; 15-吸收塔水流量计; 16-解吸塔水流量计; 17-吸收水泵; 18-解吸塔压差计; 19-解吸液罐; 20-解吸塔液封; 21-解吸塔, 22-抽气流量计(解吸侧); 23-解吸塔 π型管; 24-干燥器(解吸侧) 25-解吸塔空气流量计; 26-解吸气泵(旋涡气泵); 27-CO₂传感器(解吸侧); 28-气样抽气泵

(解吸侧)

V1-钢瓶总阀; V2-CO2流量调节阀; V3-空气流量调节阀; V4-管路切换阀(吸收侧); V5-吸收塔液体出口取样阀; V6-解吸塔液体进口取样阀; V7-吸收塔流量调节阀; V8-解吸塔流量调节阀; V9-吸收塔液体进口取样阀; V10-解吸塔液体出口取样阀; V11-管路切换阀 (解吸侧); V12-限流阀; V13-旁路调节阀;

图 2 CO₂ 吸收-解吸实验装置实物照片

二、实验设备结构参数

表1 实验设备相关参数

项目	吸收塔	解吸塔
填料种类	陶瓷拉西环 Dg10	金属鲍尔环 Dg16
塔内径 D/mm	75	75
填料层高度 h/m	0.95	0.90
空气流量计(转子流量计)	0.25~2.5 Nm³/h(量程)	4~40 Nm ³ /h(量程)
CO2流量计(转子流量计)	0.06~0.6 Nm³/h(量程)	
水流量计(转子流量计)	40~400 L/h(量程)	40~400 L/h (量程)
压差计(U管压差计)	水指示液	水指示液
CO2传感器量程	0~20%	0~5000 ppm

三、实验注意事项

1. CO₂钢瓶的使用:开启钢瓶总阀前,先确保钢瓶的减压阀处于关闭状态;开启钢瓶总阀后,调节减压阀,使减压表的压力维持在 0.1~0.2 MPa 之间;调节气体流量计至指定刻度后,减压表的压力不低于 0.1 MPa。

2. 在流体力学实验中,润湿填料不少于5分钟;测取液泛数据点时,等待时间不要过长,避免液泛过于强烈导致液体喷出塔外。

3. 在流体力学实验和传质实验中,吸收塔和解吸塔水流量计的读数要尽量 保持一致。

4. 传质实验时,过程稳定时间不少于 20 分钟。

四、CO2水溶液的亨利系数

温度/°C	亨利系数 E×10 ⁻⁵ /kPa	温度/℃	亨利系数 E×10-5/kPa						
0	0.738	30	1.88						
5	0.888	35	2.12						
10	1.05	40	2.36						
15	1.24	45	2.60						
20	1.44	50	2.87						
25	1.66	60	3.46						

表 2 CO₂水溶液的亨利系数

五、样品分析方法

1. 吸收塔进气和尾气中 CO2 浓度采用二氧化碳气体传感器测定,其数值由

传感器盘面直接读取,该数值为体积百分比。利用切换阀进行待测气路的切换,切换阀的手柄为箭头形状,箭头朝上是测定尾气浓度,箭头朝下则是测定进气浓度。通过抽气泵的抽吸作用,气体样品进入二氧化碳传感器,通过红外吸收原理进行分析,抽气泵和吸收气泵的开关是同一个电源按钮。

2. 二氧化碳水溶液浓度采用酸碱滴定分析,用移液管定量移取 40mL 二氧化碳水溶液,用已知浓度的氢氧化钠进行滴定,生成的产物是碳酸氢钠,根据酸碱平衡计算二氧化碳水溶液的浓度。酸碱滴定采用 ZDJ-4A 自动滴定仪进行操作。

六、ZDJ-4A 自动滴定仪使用说明(简化版)

ZDJ-4A 自动滴定仪如图 3 所示,现已安装调试完毕,按照以下步骤操作即可:

1. 打开自动滴定仪后面的电源开关后,液晶屏幕显示仪器型号、当前 pH 值和温度等信息;

2. 在滴定仪专用烧瓶中,加入40 mL 二氧化碳水溶液,再加约80 mL 蒸馏水; 放入磁搅拌子,然后将烧瓶放置到滴定仪测试平台上,拧松 pH 探头支撑架(其上有 pH 探头、温度计和进液毛细管各一个)的固定螺丝,使 pH 探头支 撑架下移,要求 pH 探头没入液体中约1cm,然后拧紧固定螺丝;

图 3 ZDJ-4A 自动滴定仪

3. 滴定程序操作:

(1) 滴定仪显示界面如图 4 所示,如要开始滴定操作,按"F1"键(与左侧"滴定"对应);

图 4 滴定仪操作面板

进入图 5 所示的滴定模式界面,采用第一个"重复上次滴定"模式,因此直接 按"F2"键(与左侧"确认"对应)。

图 5 滴定模式界面

滴定仪进入自动滴定过程,如图6所示,滴定期间溶液的pH值和加入的氢氧化钠体积量不断的变化。

图 6 自动滴定过程界面

滴定到达终点后,滴定仪会鸣叫提示,然后停止滴定,并进行计量管的自动 补液,如图7所示。

雷 👩 磁 ZDJ-44	清定仪		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	v	~			
	00:00	1:58	いない		н			F3 F2
	-81.8		U . U	W	J mL	题		FI
		模式		•	0	0		
J.	nV	Mode 设置 Setup	<i>′</i> ∢ 4	5	PgUp 6►	•		
AL	搅拌 Stirrer	打印 Print	1	<u>2</u>	3 PgDn	-	退出 Exit	
FX								IIN'ESA

图 7 滴定仪补液

滴定仪补液结束后,在显示屏中显示氢氧化钠消耗的体积数,如图 8 所示, 记下此数即可计算二氧化碳水溶液的浓度。

图 8 滴定体积显示

(d)将 pH 探头架抬高、固定,将滴定后的液体倒掉,清洗 pH 探头并擦干, 按图 8 所示"退出"键,则返回到图 4 所示的初始界面,可以开始新的滴定操作。

需要注意的是,在进行吸收塔进口液体浓度滴定时,由于其浓度较低,且 加入蒸馏水后,溶液没有混合均匀,pH探头处于蒸馏水中,启动自动滴定时可 能滴定结果显示为零,这时再次启动滴定即可。